PORTUGALIAE MATHEMATICA

VOLUME 34

1 9 7 5

Edição de

«GAZETA DE MATEMÁTICA, LDA»

PORTUGALIAE MATHEMATICA Rua Diário de Notícias, 134, 1.º-Esq. LISBOA-2 (PORTUGAL)

A DIRECT SUM REPRESENTATION (1)

BY DONALD E. MYERS Tucson, Arizona — U. S. A.

Norms defined by supremums are in general not generated by scalar products. However, using a representation theorem of Bochner; Hardy spaces (p=2) on tube domains are represented as Hilbert spaces.

Let T be a tube in C^n with base S, i.e. $T = \{Z \mid Z \in C^n, R(Z) \in S\}$, $S = \{(x_1, \dots, x_n) \mid \sigma_i < x_i < \eta_i\}$. $H^2(T) = \{f \mid f \text{ holomorphic in } T$,

$$||f||^2 = \sup_{x \in S} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} |f(x+iy)|^2 dy_1 dy_2 \cdots dy_n < \infty |.$$

Theorem. $H^2(T)$ is isomorphic and homeomorphic to the direct sum of 2^n copies of $H^2(T_0)$ where the base of T_0 is given by $\sigma_1 = \sigma_2 = \cdots = \sigma_n = 0$, $\eta_1 = \eta_2 = \cdots = \eta_n = +\infty$.

Proof. Because of the invariance of the integral, under affine transformations, used in computing the norm, it is sufficient to show that f has a unique representation of the form $f=f_1+\cdots+f_{2^n}$ where $f_j\in H^2(T_j)$, T_j an octant-shaped tube. T_j is octant shaped if for each i, either $\sigma_i=-\infty$ or $n_i=+\infty$ but not both. We must also show that the mapping $f\to (f_1,\cdots f_{2^n})$ is 1:1 and bi-continuous. It is 1:1 and onto if the representation is unique.

The desired unique representation is provided by Bochner's Theorem [1]. It then remains to establish continuity. Clearly $||f|| \le ||f_1|| + \cdots + ||f_{2^n}||$ where $||f_j||$ is the norm of f_j in $H^2(T_j)$,

⁽¹⁾ Received April, 1974.

AMS 1970 subject classifications 32-A07, 30-A78, 46-E20, 46-J15. Key phrases: Tube Domains, Hilbert spaces functions, isomorphisms holomorphic.

hence by the Open Mapping Theorem the inverse map $(f_1, \dots, f_{2^n}) \to f$ is also continuous.

Since $H^2(T_0)$ is a Hilbert space, $H^2(T)$ is isomorphic and homeomorphic to the Hilbert space $\bigoplus_{j=1}^{2^n} H^2(T_0)$. Using this mapping we may also imbed $H^2(T)$ as a finite dimensional subspace of the square summable power series on the unit disk with coefficients in $H^2(T_0)$.

REFERENCES

- [1] BOCHNER, S., Bounded analytic functions in several variables and multiple Laplace integrals, Amer. J. Math., 59 (1937), 732.
- [2] MYERS, D. E., An additive decomposition theorem for analytic functions; Proc. AMS, 77 (1971), 170.